Mekanisme Aksi Kuersetin dan Sensitizer Insulin Terhadap Peningkatan Sensitivitas Insulin
DOI:
https://doi.org/10.30649/obj.v6i2.88Kata Kunci:
kuersetin, pioglitazon, metformin, sensitivitas insulinAbstrak
Diabetes adalah gangguan metabolisme yang heterogen dan kompleks yang ditandai dengan peningkatan kadar glukosa darah karena resistensi terhadap aksi insulin, sekresi insulin yang tidak memadai, atau keduanya. Resistensi insulin merupakan salah satu penyebab utama pada DMT2. Resistensi insulin dapat disebabkan oleh faktor prereseptor, reseptor, dan postreseptor. Masalah pada kerja reseptor dan pascareseptor insulin biasanya disebabkan oleh obesitas atau kelainan yang menyebabkan sekresi berlebihan dari hormon diabetogenik atau hormon antagonis insulin (yaitu, glukagon, epinefrin, kortisol, hormon pertumbuhan, progesteron, atau hormon tiroid). Tujuan literatur review ini adalah untuk mereview literatur terkait mekanisme aksi kuersetin dan sensitizer insulin dalam meningkatkan sesnsitivitas insulin. Dalam literatur review ini, penulis menggunakan artikel yang bersumber dari electronic data base seperti google scholar dan pubmed dengan kata kunci kuersetin, pioglitazon, metformin dan sensitivitas insulin, dalam kurun waktu 2013 – 2022. Data yang telah didapatkan, ditelaah, dibandingkan, disusun secara sistematis dan dibahas. Dari beberapa sumber yang telah didapatkan menyebutkan bahwa kuersetin mempunyai mekanisme aksi yang sama dengan sensitizer insulin dalam memperbaiki sensitivitas insulin.
Referensi
Alam, F., Islam, M. A., Mohamed, M., Ahmad, I., Kamal, M. A., Donnelly, R., Idris, I., & Gan, S. H. 2019. Efficacy and Safety of Pioglitazone Monotherapy in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Scientific reports, 9(1), 5389. https://doi.org/10.1038/s41598-019-41854-2
Arias, N., Macarulla, M. T., Aguirre, L., Martínez-Castaño, M. G., & Portillo, M. P. 2014. Quercetin can reduce insulin resistance without decreasing adipose tissue and skeletal muscle fat accumulation. Genes & nutrition, 9(1), 361. https://doi.org/10.1007/s12263-013-0361-7
Awaluddin, F., Jaya Putra, A.M., Supandi. 2015. Molecular Docking Studies of Flavonoids of Noni Fruit (Morinda citrifolia L.) to Peroxisome Proliferator-Activated Receptor-Gamma (PPARγ). Proceeding of the 3rd International Conference on Computation for Science and Technology (ICCST-3), 2015, 95-99. DOI: doi:10.2991/iccst-15.2015.18
Castro, A. V., Kolka, C. M., Kim, S. P., & Bergman, R. N. 2014. Obesity, insulin resistance and comorbidities? Mechanisms of association. Arquivos brasileiros de endocrinologia e metabologia, 58(6), 600–609. https://doi.org/10.1590/0004-2730000003223
Church, T. J., & Haines, S. T. 2016. Treatment Approach to Patients With Severe Insulin Resistance. Clinical diabetes : a publication of the American Diabetes Association, 34(2), 97–104. https://doi.org/10.2337/diaclin.34.2.97
Dhanya R. 2022. Quercetin for managing type 2 diabetes and its complications, an insight into multitarget therapy. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 146, 112560. https://doi.org/10.1016/j.biopha.2021.112560
Dhanya, R., Arya, A. D., Nisha, P., & Jayamurthy, P. 2017. Quercetin, a Lead Compound against Type 2 Diabetes Ameliorates Glucose Uptake via AMPK Pathway in Skeletal Muscle Cell Line. Frontiers in pharmacology, 8, 336. https://doi.org/10.3389/fphar.2017.00336
Doi, M., Morita, N., Sakashita, M., Okuzawa, T., Ohgiya, S., Okamoto, D., Sato, K., Ito, Y., Matsuura, H., & Hashidoko, Y. 2022. Pinellic Acid Isolated from Quercetin-rich Onions has a Peroxisome Proliferator-Activated Receptor-Alpha/Gamma (PPAR-α/γ) Transactivation Activity. Planta medica, 10.1055/a-1345-9471. Advance online publication. https://doi.org/10.1055/a-1345-9471
Eid, H. M., Nachar, A., Thong, F., Sweeney, G., & Haddad, P. S. 2015. The molecular basis of the antidiabetic action of quercetin in cultured skeletal muscle cells and hepatocytes. Pharmacognosy magazine, 11(41), 74–81. https://doi.org/10.4103/0973-1296.149708
Forbes, J. M., & Cooper, M. E. 2013. Mechanisms of diabetic complications. Physiological reviews, 93(1), 137–188. https://doi.org/10.1152/physrev.00045.2011
Galicia-Garcia, U., Benito-Vicente, A., Jebari, S., Larrea-Sebal, A., Siddiqi, H., Uribe, K. B., Ostolaza, H., & Martín, C. 2020. Pathophysiology of Type 2 Diabetes Mellitus. International journal of molecular sciences, 21(17), 6275. https://doi.org/10.3390/ijms21176275
Kojta, I., Chacińska, M., & Błachnio-Zabielska, A. 2020. Obesity, Bioactive Lipids, and Adipose Tissue Inflammation in Insulin Resistance. Nutrients, 12(5), 1305. https://doi.org/10.3390/nu12051305
Lee, J., Noh, S., Lim, S., & Kim, B. 2021. Plant Extracts for Type 2 Diabetes: From Traditional Medicine to Modern Drug Discovery. Antioxidants (Basel, Switzerland), 10(1), 81. https://doi.org/10.3390/antiox10010081
Nayak, I., Narendar, K., M, P. A., Jamadar, M. G., & Kumar, V. H. 2017. Comparison of Pioglitazone and Metformin Efficacy against Glucocorticoid Induced Atherosclerosis and Hepatic Steatosis in Insulin Resistant Rats. Journal of clinical and diagnostic research : JCDR, 11(7), FC06–FC10. https://doi.org/10.7860/JCDR/2017/28418.10193
Solis-Herrera C, Triplitt C, Reasner C, et al. Classification of Diabetes Mellitus. [Updated 2018 Feb 24]. In: Feingold KR, Anawalt B, Boyce A, et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK279119/?report=classic
Thrasher, J. 2017. Pharmacologic Management of Type 2 Diabetes Mellitus: Available Therapies. The American journal of medicine, 130(6S), S4–S17. https://doi.org/10.1016/j.amjmed.2017.04.004
Variya, B. C., Bakrania, A. K., & Patel, S. S. 2020. Antidiabetic potential of gallic acid from Emblica officinalis: Improved glucose transporters and insulin sensitivity through PPAR-γ and Akt signaling. Phytomedicine : international journal of phytotherapy and phytopharmacology, 73, 152906. https://doi.org/10.1016/j.phymed.2019.152906
Wondmkun Y. T. 2020. Obesity, Insulin Resistance, and Type 2 Diabetes: Associations and Therapeutic Implications. Diabetes, metabolic syndrome and obesity : targets and therapy, 13, 3611–3616. https://doi.org/10.2147/DMSO.S275898
Xu, L., Li, Y., Dai, Y., & Peng, J. 2018. Natural products for the treatment of type 2 diabetes mellitus: Pharmacology and mechanisms. Pharmacological research, 130, 451–465. https://doi.org/10.1016/j.phrs.2018.01.015
Yang, X., Xu, Z., Zhang, C., Cai, Z., & Zhang, J. 2017. Metformin, beyond an insulin sensitizer, targeting heart and pancreatic β cells. Biochimica et biophysica acta. Molecular basis of disease, 1863(8), 1984–1990. https://doi.org/10.1016/j.bbadis.2016.09.019
Yi, H., Peng, H., Wu, X., Xu, X., Kuang, T., Zhang, J., Du, L., & Fan, G. 2021. The Therapeutic Effects and Mechanisms of Quercetin on Metabolic Diseases: Pharmacological Data and Clinical Evidence. Oxidative medicine and cellular longevity, 2021, 6678662. https://doi.org/10.1155/2021/6678662
Zheng, Y., Ley, S. H., & Hu, F. B. 2018. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nature reviews. Endocrinology, 14(2), 88–98. https://doi.org/10.1038/nrendo.2017.151
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2023 Oceana Biomedicina Journal

Artikel ini berlisensiCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
