Molecular Mechanism of Cholerae Toxin (ctx) in Causing Diarrhea
DOI:
https://doi.org/10.30649/obj.v1i2.16Keywords:
Vibrio cholerae, cholerae toxin (ctx), type II secretion (T2S), GM1 ganglioside, adenilate cyclase, T0xR geneAbstract
Vibrio cholerae is one of the pathogenic bacteria transmitted through contaminated
food, especially contaminated seafood and beverages. V. cholerae produces cholerae toxin
(ctx) which is encoded by the ctx gene located within its chromosome. This toxin has been
recognized as one of the toxins responsible for cholera outbreaks. The mechanism of ctx gene
expression is induced by environmental signals such as pH, osmolarity, temperature, bile,
amino acids, and CO2. These signals will be a positive transcriptional factor to the ToxR gene
that regulates the biogenesis of cholerae toxin. After cholerae toxin has been successfully
expressed, V. cholerae uses a type II secretion (T2S) pathway to deliver cholerae toxin to the
extracellular environment. Cholerae toxin consists of A and B subunits. The B subunit plays
a role in attaching to the receptor Manosialosyl Ganglioside (GM1 ganglioside) and the A
subunit plays a role in catalyzing ADP-ribosylation of Gs (stimulatory) protein and turning
them into active condition. The Gs protein will convert the inactive adenilate cyclase (AC)
into active AC. The increase of AC activity will increase the cyclic adenosine 3'5'-
monophosphate (cAMP) concentration along the cell membrane. The cAMP then causes the
active secretion of sodium (Na+), chloride (Cl-), potassium (K+), bicarbonate (HCO3-), and water (H2O) out of the cell into the intestinal lumen, resulting in large fluid losses and
electrolyte imbalances.
References
Brooks, G.F., Carrol, K.C., Butel, J.S., Morse, S.A. and Mietzner, T.A. 2013. Medical
Microbiology 26th Edition. McGraw-Hill Companies Inc.
Chen, C.H., Shimada, T., Elhadi, N., Radu, S. and Nishibuchi, M. 2004. Phenotypic and
Genotypic Characteristics and Epidemiological Significance of ctx Strains of Vibrio
cholerae Isolated from Seafood in Malaysia. Appl. Environ. Microbiol. 70(4): 1964-
Chomvarin, C., Namwat, W., Wongwajana, S., Alam, M., Thaew-Nonngiew, K.,
Sinchaturus, A. and Engchanil, C. 2007. Application of duplex-PCR in rapid and
reliable detection of toxigenic Vibrio cholerae in water samples in Thailand. J Gen
Appl Microbiol. 53(4): 229-237.
Douzi, B., Filloux, A. and Voulhoux, R. 2012. On the path to uncover the bacterial type II
secretion system. Phil. Trans. R. Soc. B. 367: 1059–1072.
Dziejman, M., Balon, E., Byod, D., Fraser, C.M., Heidelberg, J.F. and Mekalanos, J.J. 2002.
Comparative Genomic Analysis of Vibrio cholerae Genes that Correlate With Cholera
Endemic and Pandemic Diseases. Proc Natl Acad Sci USA. 99(2): 1556-1561.
Faruque, S.H.M., Albert, M.J. and Mekalanos, J.J. 1998. Epidemiology, Genetics, and
Ecology of Toxigenic Vibrio cholerae. Microbiology and Molecular Biology Reviews.
(4): 1301-1314.
Green, E.R. and Mecsas, J. 2016. Bacterial Secretion Systems – An overview. Microbiol
Spectr. 4(1): 1-32.
Huq, A., Haley, B.J., Taviani, E., Chen, A., Hasan, N.A. and Colwell, R.R. 2012. Detection,
Isolation, and Identification of Vibrio cholerae from the Environment. Curr Protoc
Microbiol. Chapter: Unit6A.5. doi:10.1002/9780471729259.mc06a05s26.
Kirn, T.J., Jude, B.A. and Taylor, R.K. 2005. A colonization factor links Vibrio cholerae
environmental survival and human infection. Nature. 438: 863-866.
Korotkov, K.V., Sandkvist, M. and Hol, W.G. 2012. The type II secretion system:
Biogenesis, molecular architecture and mechanism. Nat Rev Microbiol. 10: 336–351.
Lesmana, M. 2004. Perkembangan mutakhir infeksi kolera. J Kedokter Trisakti. 23(3): 101-
Lima, A.A.M. and Fonteles, M.C. 2015. From Escherichia coli heat-stable enterotoxin to
mammalian endogenous guanylin hormones. Brazilian Journal of Medical and
Biological Research. 47(3): 179-191.
Maheshwari, M., Nelapati, K. and Kiranmayi, B. 2011. Vibrio cholerae - A Review.
Veterinary World. 4(9): 423-428.
Nivaskumar, M. and Francetic, O. 2014. Type II secretion system: A magic beanstalk or a
protein escalator. Biochimica et Biophysica Acta. 1843: 1568-1577.
Olaniran, A.O., Naicker, K. and Pillay, B. 2011. Toxigenic Escherichia coli and Vibrio
cholerae: Classification, pathogenesis and virulence Determinants. Biotechnology and
Molecular Biology Review. 6(4): 94-100.
Pal, P. 2014. Role of cholera toxin in Vibrio cholerae infection in humans - A Review.
International Letters of Natural Science. 22: 22-32.
Ramazanzadeh, R., Rouhi, S., Shakib, P., Shahbazi, B., Bidarpour, F. and Karimi, M. 2015.
Molecular Characterization of Vibrio cholerae Isolated from Clinical Samples in
Kurdistan Province, Iran. Jundishapur J Microbiol. 8 (5): 1-6.
Raskin, D., Bina, J. and Mekalanos, J. 2004. Genomic and Genetic Analysis of Vibrio
cholerae. ASM News. 70(2): 57-62.
Reidl, J. and Klose, K.E. 2002. Vibrio cholerae and cholera: out of the water and into the
host. FEMS Microbiology Reviews. 26: 125-139.
Ryan, K.J. and Ray, C.G. 2004. Sherris Medical Microbiology: An Introduction to Infectious
Disease 4th Edition. The McGraw-Hill Companies.
Schild, S., Bishop, A.L. and Camilli, A. 2008. Ins and outs of Vibrio cholerae: Vibrio
cholerae transitions between the human gut and the aquatic environment are aided by
specific shifts in gene expression. Microbe. 3 (3): 131–136.
Sikora, A.E. 2013. Proteins Secreted via the Type II Secretion System: Smart Strategies of
Vibrio cholerae to Maintain Fitness in Different Ecological Niches. PLOS Pathogens.
(2): 1-4.
Thiagarajah, J.R. and Verkman, A.S. 2005. New drug targets for cholera therapy. Trends
Pharmacol Sci. 26(4): 172-5.
Waturangi, D.E., Wennars, M., Suhartono, M.X. and Wijaya, Y.F. 2013. Edible ice in
Jakarta, Indonesia, is contaminated with multidrug-resistant Vibrio cholerae with
virulence potential. Journal of Medical Microbiology. 62: 352–359.
Wernick, N.L.B., Chinnapen, D.J.F., Cho, J.A. and Lencer, W.I. 2010. Cholera Toxin: An
Intracellular Journey into the Cytosol by Way of the Endoplasmic Reticulum. Toxins.
: 310-325; doi:10.3390/toxins2030310.
Wong, E., Vaaje-Kolstad, G., Ghosh, A., Hurtado-Guerrero, R., Konarev, P.V., Ibrahim,
A.F.M., Svergun, D.I., Eijsink, V.G.H., Chatterjee, N.S. and van Aalten, D.M.F.
The Vibrio cholerae colonization factor GbpA possesses a modular structure
that governs binding to different host surfaces. PLoS Pathog. 8: e1002373.
doi:10.1371/journal.ppat.1002373.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Oceana Biomedicina Journal

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.