Analisa In Silico Kunyit (Curcuma longa) sebagai Inhibitor Murine Double Minute 2 Protein untuk Terapi Glioblastoma Multiforme

Benny Iswanto Pantoro, Nancy Margarita Rehatta, Siti Khaerunnisa, Anna Surgean Veterini, Yuani Setiawati


Tumor otak meliputi berbagai kanker yang tumbuh dari sel otak (tumor otak primer) ataupun berasal dari tumor sistemik yang mengalami metastasis ke otak (tumor otak sekunder). Dari seluruh tipe tumor otak primer, Glioblastoma Multiforme merupakan tumor otak yang paling sering dijumpai dan merupakan salah satu yang paling ganas. Pada 85% kasus Glioblastoma Multiforme, umumnya ditemukan kaitan dengan adanya gangguan tingkat molekuler pada jalur tumor suppresor gene p53, sehingga semakin banyak terapi yang dikembangkan dengan berfokus pada jalur ini. Salah satu jalur yang dapat dipakai sebagai model terapi adalah menginhibisi protein murine double minute 2 yang merupakan inhibitor dari p53. Kunyit (curcuma longa) adalah salah satu tanaman tradisional yang sudah sangat sering digunakan dalam dunia medis dan berbagai ekstrak nya telah diteliti mempunyai efek anti-kanker.

Penelitian ini adalah sebuah studi in silico yang meneliti potensi berbagai bahan kimia aktif dari kunyit sebagai inhibitor pada protein murine double minute 2 menggunakan AutoDock 4.2 dan berdasarkan prinsip algoritma genetik Lamarckian. Hasil docking menunjukkan binding energy berkisar dari rentang -4.81 kcal/mol sampai -2.34 kcal/mol, dengan senyawa curcumenol mempunyai binding energy yang paling kecil dan curcumin mempunyai binding energy yang paling besar. Studi ini dapat digunakan sebagai dasar untuk melakukan penelitian lebih lanjut (in vivo dan in vitro) terkait bahan kimia aktif kunyit dan efek nya sebagai terapi Glioblastoma Multiforme.

Full Text:



Adejoro, I., Waheed, S. and Adeboye, O. (2016). Molecular Docking Studies of Lonchocarpus cyanescens Triterpenoids as Inhibitors for Malaria. Journal of Physical Chemistry & Biophysics, 6(2).

Afriza, D., Suriyah, W. and Ichwan, S. (2018). In silicoanalysis of molecular interactions between the anti-apoptotic protein survivin and dentatin, nordentatin, and quercetin. Journal of Physics: Conference Series, 1073, p.032001.

Brust, J., 2012. Current Diagnosis & Treatment Neurology. 2nd ed.

Butowski, N. (2015). Epidemiology and Diagnosis of Brain Tumors. CONTINUUM: Lifelong Learning in Neurology, 21, pp.301-313.

Daina, A., Michielin, O. and Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1).

Dundas, J., Ouyang, Z., Tseng, J., Binkowski, A., Turpaz, Y. and Liang, J. (2006). CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Research, 34(Web Server), pp.W116-W118.

Forte, I., Indovina, P., Iannuzzi, C., Cirillo, D., Di Marzo, D., Barone, D., Capone, F., Pentimalli, F. and Giordano, A. (2019). Targeted therapy based on p53 reactivation reduces both glioblastoma cell growth and resistance to temozolomide. International Journal of Oncology.

Guo, L., Cai, X., Lee, J., Kang, S., Shin, E., Zhou, H., Jung, J. and Kim, Y. (2008). Comparison of suppressive effects of demethoxycurcumin and bisdemethoxycurcumin on expressions of inflammatory mediators In Vitro and In Vivo. Archives of Pharmacal Research, 31(4), pp.490-496.

Huang, Y., Rose, P. and Hsu, C. (2015). Citing a Data Repository: A Case Study of the Protein Data Bank. PLOS ONE, 10(8), p.e0136631.

Hucklenbroich, J., Klein, R., Neumaier, B., Graf, R., Fink, G., Schroeter, M. and Rueger, M. (2014). Aromatic-turmerone induces neural stem cell proliferation in vitro and in vivo. Stem Cell Research & Therapy, 5(4), p.100.

Kim, S., Thiessen, P., Bolton, E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B., Wang, J., Yu, B., Zhang, J. and Bryant, S. (2015). PubChem Substance and Compound databases. Nucleic Acids Research, 44(D1), pp.D1202-D1213.

Klinger, N. and Mittal, S. (2016). Therapeutic Potential of Curcumin for the Treatment of Brain Tumors. Oxidative Medicine and Cellular Longevity, 2016, pp.1-14.

Kocaadam, B. and Şanlier, N. (2015). Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Critical Reviews in Food Science and Nutrition, 57(13), pp.2889-2895.

Lipinski, C., Lombardo, F., Dominy, B. and Feeney, P. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1. Advanced Drug Delivery Reviews, 46(1-3), pp.3-26.

Lo, J., Kamarudin, M., Hamdi, O., Awang, K. and Kadir, H. (2015). Curcumenol isolated from Curcuma zedoaria suppresses Akt-mediated NF-κB activation and p38 MAPK signaling pathway in LPS-stimulated BV-2 microglial cells. Food & Function, 6(11), pp.3550-3559.

Morris, G., Goodsell, D., Halliday, R., Huey, R., Hart, W., Belew, R. and Olson, A. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19(14), pp.1639-1662.

Park, S., Jin, M., Kim, Y., Kim, Y. and Lee, S. (2012). Anti-inflammatory effects of aromatic-turmerone through blocking of NF-κB, JNK, and p38 MAPK signaling pathways in amyloid β-stimulated microglia. International Immunopharmacology, 14(1), pp.13-20.

Togar, B., Turkez, H., Tatar, A., Hacimuftuoglu, A. and Geyikoglu, F. (2014). Cytotoxicity and genotoxicity of zingiberene on different neuron cell lines in vitro. Cytotechnology, 67(6), pp.939-946.

Wang, H., Oo Khor, T., Shu, L., Su, Z., Fuentes, F., Lee, J. and Tony Kong, A. (2012). Plants vs. Cancer: A Review on Natural Phytochemicals in Preventing and Treating Cancers and Their Druggability. Anti-Cancer Agents in Medicinal Chemistry, 12(10), pp.1281-1305.

Zhang, Y., Dube, C., Gibert, M., Cruickshanks, N., Wang, B., Coughlan, M., Yang, Y., Setiady, I., Deveau, C., Saoud, K., Grello, C., Oxford, M., Yuan, F. and Abounader, R. (2018). The p53 Pathway in Glioblastoma. Cancers, 10(9), p.297.



  • There are currently no refbacks.

Copyright (c) 2020 Benny Iswanto Pantoro

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Abstracting and Indexing: GARUDA, Neliti, ISJD-LIPI, Google Scholar, CrossRef, ROAD, PKP Index, Microsoft Academic (articles only) and SciLit.
 Dimensions | The Next Evolution in Linked Scholarly Information
DOI Prefix:  10.30649

Template of the Manuscript: click the icon below, click menu bar FILE, choose and click Download, click Microsoft Wordocx)

Image result for google document


TURNITIN plagiarism check | Shopee Indonesia


Published by: Universitas Hang Tuah, Surabaya, Jawa Timur, Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.